Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Infect Dis ; 75(1): e403-e409, 2022 08 24.
Article in English | MEDLINE | ID: covidwho-2188484

ABSTRACT

BACKGROUND: Remdesivir is an antiviral used to treat coronavirus disease 2019 (COVID-19), which improves some clinical outcomes. Dexamethasone has been shown to be effective in reducing mortality. It has been hypothesized that combination of these two drugs can improve mortality. We evaluated the effect of combination on mortality of COVID-19 patients requiring O2 therapy. METHODS: A prospective quasi-experimental study, including two independent, sequential controlled cohorts, one received remdesivir-dexamethasone and the other dexamethasone alone, was designed. All COVID-19 patients requiring supplemental O2 therapy were enrolled consecutively. The sample size to power mortality was a priori calculated. The primary endpoints were 30-day mortality and viral clearance differences. Secondary endpoints were differences in hospitalization times, improvement in respiratory failure (PO2/FiO2) and inflammatory indices (fibrinogen, CRP, neutrophil/lymphocyte ratio, D-Dimer). Kaplan-Meier curves and the log-rank test were used to evaluate significant differences in mortality between groups. RESULTS: In total, 151 COVID-19 patients were enrolled (remdesivir/dexamethasone group, 76, and dexamethasone alone, 75). No differences in demographic, clinical, and laboratory characteristics were observed between the 2 groups at baseline. Faster viral clearance occurred in the remdesivir/dexamethasone group compared to dexamethasone alone (median 6 vs 16 days; P < .001). The 30-day mortality in the remdesivir/dexamethasone group was 1.3%, whereas in dexamethasone alone was 16% (P < .005). In the remdesivir/dexamethasone group compared to dexamethasone alone there was a reduction in hospitalization days (P < .0001) and a faster improvement in both respiratory function and inflammatory markers. CONCLUSIONS: Remdesivir/dexamethasone treatment is associated with significant reduction in mortality, length of hospitalization, and faster SARS-CoV-2 clearance, compared to dexamethasone alone.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents , Dexamethasone/therapeutic use , Humans , Prospective Studies , SARS-CoV-2
2.
Respir Res ; 23(1): 327, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2153589

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is one of the most severe complications of SARS-CoV-2 infection. Non-Invasive Respiratory Support (NRS) as Continuous Positive Airway Pressure (CPAP) and/or Non-Invasive Ventilation (NIV) has been proven as effective in the management of SARS-CoV-2-related ARDS. However, the most appropriate timing for start NRS is unknown. METHODS: We conducted a prospective pilot study including all consecutive patients who developed moderate SARS-CoV-2-related ARDS during hospitalization. Patients were randomly divided into two intervention groups according to ARDS severity (assessed by PaO2/FiO2-P/F) at NRS beginning: group A started CPAP/NIV when P/F was ≤ 200 and group B started CPAP/NIV when P/F was ≤ 150. Eligible patients who did not give their consent to CPAP/NIV until the severe stage of ARDS and started non-invasive treatment when P/F ≤ 100 (group C) was added. The considered outcomes were in-hospital mortality, oro-tracheal intubation (OTI) and days of hospitalization. RESULTS: Among 146 eligible patients, 29 underwent CPAP/NIV when P/F was ≤ 200 (Group A), 68 when P/F was ≤ 150 (Group B) and 31 patients agreed to non-invasive treatment only when P/F was ≤ 100 (Group C). Starting NRS at P/F level between 151 and 200 did not results in significant differences in the outcomes as compared to treatment starting with P/F ranging 101-150. Conversely, patients undergone CPAP/NIV in a moderate stage (P/F 101-200) had a significantly lower in-hospital mortality rate (13.4 vs. 29.0%, p = 0.044) and hospitalization length (14 vs. 15 days, p = 0.038) than those in the severe stage (P/F ≤ 100). Age and need for continuous ventilation were independent predictors of CPAP/NIV failure. CONCLUSIONS: Starting CPAP/NIV in patients with SARS-CoV-2-related ARDS in moderate stage (100 > P/F ≤ 200) is associated to a reduction of both in-hospital mortality and hospitalization length compared to the severe stage (P/F ≤ 100). Starting CPAP/NIV with a P/F > 150 does not appear to be of clinical utility.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Pilot Projects , Prospective Studies , COVID-19/therapy , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/therapy
3.
Front Cardiovasc Med ; 9: 912474, 2022.
Article in English | MEDLINE | ID: covidwho-2043425

ABSTRACT

Background: The heart is commonly involved in COVID-19, and rhythm disorders have been largely reported. Objective: To evaluate the association of some non-cardiac and cardiac comorbidities and QT dispersion with arrhythmias and their impact on outcomes in hospitalized patients with COVID-19. Methods: Each patient underwent cardiac telemetry monitoring through the entire hospitalization period, laboratory analyses, 12-lead ECG, and lung imaging examination. Patients with arrhythmia were divided into three groups (bradyarrhythmias, tachyarrhythmias, and tachy- and bradyarrhythmias). Results: Two-hundred patients completed the study (males, 123; mean age, 70.1 years); of these, 80 patients (40%) exhibited rhythm disorders on telemetry. Patients with arrhythmia were older (p < 0.0001), had a greater number of comorbidities (p < 0.0001), higher values of creatinine (p = 0.007), B-type natriuretic peptide (p < 0.0001), troponin (p < 0.0001), C-reactive protein (p = 0.01), ferritin (p = 0.001), D-dimer (p < 0.0001), procalcitonin (p = 0.0008), QT interval (p = 0.002), QTc interval (p = 0.04), and QTc dispersion (p = 0.01), and lower values of sodium (p = 0.03), magnesium (p = 0.04), glomerular filtration rate (p < 0.0001), and hemoglobin (p = 0.008) as compared to patients without arrhythmia. By comparing the three subgroups of patients, no significant differences were found. At multivariate analysis, age [odds ratio (OR) = 1.14 (95% CI: 1.07-1.22); p = 0.0004], coronary artery disease [OR = 12.7 (95% CI: 2.38-68.01); p = 0.005], and circulating troponin [OR = 1.05 (95% CI: 1.003-1.10); p = 0.04] represented risk factors independently associated with arrhythmia. All-cause in-hospital mortality was ∼40-fold higher among patients with arrhythmia [OR = 39.66 (95% CI: 5.20-302.51); p = 0.0004]. Conclusion: Arrhythmias are associated with aging, coronary artery disease, subtle myocardial injury, hyperinflammatory status, coagulative unbalance, and prolonged QTc dispersion in patients with COVID-19, and confer a worse in-hospital prognosis. Given its usefulness, routinary use of cardiac telemetry should be encouraged in COVID wards.

4.
J Clin Med ; 11(9)2022 Apr 26.
Article in English | MEDLINE | ID: covidwho-1809966

ABSTRACT

Background Coronavirus disease 2019 (COVID-19) can be complicated by interstitial pneumonia, possibly leading to severe acute respiratory failure and death. Because of variable evolution ranging from asymptomatic cases to the need for invasive ventilation, COVID-19 outcomes cannot be precisely predicted on admission. The aim of this study was to provide a simple tool able to predict the outcome of COVID-19 pneumonia on admission to a low-intensity ward in order to better plan management strategies for these patients. Methods The clinical records of 123 eligible patients were reviewed. The following variables were analyzed on admission: chest computed tomography severity score (CTSS), PaO2/FiO2 ratio, lactate dehydrogenase (LDH), neutrophil to lymphocyte ratio (NLR), lymphocyte to monocyte ratio, C-reactive protein (CRP), fibrinogen, D-dimer, aspartate aminotransferase (AST), alanine aminotransferase, alkaline phosphatase, and albumin. The main outcome was the intensity of respiratory support (RS). To simplify the statistical analysis, patients were split into two main groups: those requiring no or low/moderate oxygen support (group 1); and those needing subintensive/intensive RS up to mechanical ventilation (group 2). Results The RS intensity was significantly associated with higher CTSS and NLR scores; lower PaO2/FiO2 ratios; and higher serum levels of LDH, CRP, D-dimer, and AST. After multivariate logistic regression and ROC curve analysis, CTSS and LDH were shown to be the best predictors of respiratory function worsening. Conclusions Two easy-to-obtain parameters (CTSS and LDH) were able to reliably predict a worse evolution of COVID-19 pneumonia with values of >7 and >328 U/L, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL